全部版块 我的主页
论坛 经济学人 二区 外文文献专区
442 0
2022-03-06
摘要翻译:
在本文中,我们提出了一种新的方法来搜索歌唱声音信号中成对音符起始和偏移量的精确位置。与现有的起病检测算法相比,我们的方法在两个关键方面有所不同。首先,我们利用相关熵作为检测函数,在保持对异常值不敏感的情况下捕捉瞬时通量。相关熵是一种受Reyni熵启发的广义相关函数。其次,针对该检测函数设计了一种新颖的峰值拾取算法。通过计算预定义的逆双曲核对检测函数的适应度,可以同时找到起始点和相应的偏移量。实验结果表明,该方法的性能明显优于或可与现有的歌唱声部起始检测技术相媲美。
---
英文标题:
《A pairwise approach to simultaneous onset/offset detection for singing
  voice using correntropy》
---
作者:
Sungkyun Chang and Kyogu Lee
---
最新提交年份:
2016
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  In this paper, we propose a novelmethod to search for precise locations of paired note onset and offset in a singing voice signal. In comparison with the existing onset detection algorithms,our approach differs in two key respects. First, we employ Correntropy, a generalized correlation function inspired from Reyni's entropy, as a detection function to capture the instantaneous flux while preserving insensitiveness to outliers. Next, a novel peak picking algorithm is specially designed for this detection function. By calculating the fitness of a pre-defined inverse hyperbolic kernel to a detection function, it is possible to find an onset and its corresponding offset simultaneously. Experimental results show that the proposed method achieves performance significantly better than or comparable to other state-of-the-art techniques for onset detection in singing voice.
---
PDF链接:
https://arxiv.org/pdf/1603.06065
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群