摘要翻译:
本文研究了在快速振荡随机波动下零息债券的期限结构定价模型。分析了描述利率波动聚类的广义Cox-Ingersoll-Ross双因素模型的解。主要目的是导出债券价格关于代表随机波动过程快速尺度的奇异参数的渐近展开式。给出了双因子广义CIR模型解的二阶渐近展开式,并证明了展开式中的前两项与表示随机波动率的变量无关。
---
英文标题:
《On the singular limit of solutions to the CIR interest rate model with
stochastic volatility》
---
作者:
B. Stehlikova, D. Sevcovic
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
英文摘要:
In this paper we are interested in term structure models for pricing zero coupon bonds under rapidly oscillating stochastic volatility. We analyze solutions to the generalized Cox-Ingersoll-Ross two factors model describing clustering of interest rate volatilities. The main goal is to derive an asymptotic expansion of the bond price with respect to a singular parameter representing the fast scale for the stochastic volatility process. We derive the second order asymptotic expansion of a solution to the two factors generalized CIR model and we show that the first two terms in the expansion are independent of the variable representing stochastic volatility.
---
PDF链接:
https://arxiv.org/pdf/0811.0591