全部版块 我的主页
论坛 经济学人 二区 外文文献专区
401 0
2022-03-06
摘要翻译:
尽管计算能力在最近几十年有所提高,但大脑连通性的估计仍然是一项繁琐的任务。算法的高计算成本随着估计的信号数的平方而增加,通常在数千个范围内。在这项工作中,我们提出了一个广泛使用的算法的重新表述,允许在更小的时间内估计整个大脑的连通性。我们从锁相值(PLV)的原始实现开始,以一种高度计算效率的方式重新定义了锁相值。此外,该公式强调了它与相干性的强相似性,我们利用相干性引入了两个对零滞后同步不敏感的新度量,即PLV的虚部(iPLV)和它的校正对应项(ciPLV)。新的PLV实现避免了一些高CPU开销的操作,比原算法实现了100倍的加速。在存在体积传导的情况下,新导出的度量具有高度的鲁棒性。特别地,ciPLV被证明能够忽略零滞后连通性,而正确地估计非零滞后连通性。我们对PLV的实现使得在更短的时间内计算全脑连通性成为可能。利用ciPLV的模拟结果表明,在存在体积传导或源泄漏效应的情况下,该量度是测量同步的理想量度。
---
英文标题:
《Phase Locking Value revisited: teaching new tricks to an old dog》
---
作者:
Ricardo Bru\~na, Fernando Maest\'u, Ernesto Pereda
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Physics        物理学
二级分类:Chaotic Dynamics        混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Physics        物理学
二级分类:Data Analysis, Statistics and Probability        数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--

---
英文摘要:
  Despite the increase in calculation power in the last decades, the estimation of brain connectivity is still a tedious task. The high computational cost of the algorithms escalates with the square of the number of signals evaluated, usually in the range of thousands. In this work we propose a re-formulation of a widely used algorithm that allows the estimation of whole brain connectivity in much smaller times. We start from the original implementation of Phase Locking Value (PLV) and re-formulated it in a highly computational efficient way. Besides, this formulation stresses its strong similarity with coherence, which we used to introduce two new metrics insensitive to zero lag synchronization, the imaginary part of PLV (iPLV) and its corrected counterpart (ciPLV). The new implementation of PLV avoids some highly CPU-expensive operations, and achieved a 100-fold speedup over the original algorithm. The new derived metrics were highly robust in the presence of volume conduction. ciPLV, in particular, proved capable of ignoring zero-lag connectivity, while correctly estimating nonzero-lag connectivity. Our implementation of PLV makes it possible to calculate whole-brain connectivity in much shorter times. The results of the simulations using ciPLV suggest that this metric is ideal to measure synchronization in the presence of volume conduction or source leakage effects.
---
PDF链接:
https://arxiv.org/pdf/1710.08037
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群