全部版块 我的主页
论坛 经济学人 二区 外文文献专区
207 0
2022-03-06
摘要翻译:
设$K$是特征$P>0$的{em完美}域,$A_1:=K<x,\der\derx-x\der=1>$是第一Weyl代数,$Z:=K[x:=x^p,y:=\der^p]$是其中心。证明了$(i)$约束映射$\res:\aut_k(A_1)\ra\aut_k(Z),\s\mapsto\s_z$是一个单同态,其中$\im(\res)=\g:=\{\tau\in\aut_k(Z)\cj(\tau)=1\}$是$\tau$的雅可比(注意$\aut_k(Z)=k^*\ltimes\g$,如果$k$是{\em not}完美,则$\im(\res)\neq\g$);$(ii)$双射$\res:\aut_k(A_1)\ra\g$是无穷维代数群的一个单态,它{\em not}是同构(即使$k$是代数闭的);$(iii)$通过$Z$上的微分运算符$\cd(Z)$和Fronenius映射的负幂$F$找到了$\res^{-1}$的显式公式。本文证明了以下(非明显的)等式:$$(\frac{d}{dx}+f)^p=(\frac{d}{dx})^p+\frac{d^{p-1}f}{dx^{p-1}}+f^p,f\in k[x]。$$
---
英文标题:
《The group of automorphisms of the first Weyl algebra in prime
  characteristic and the restriction map》
---
作者:
V. V. Bavula
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Rings and Algebras        环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let $K$ be a {\em perfect} field of characteristic $p>0$, $A_1:=K< x, \der | \der x- x\der =1>$ be the first Weyl algebra and $Z:=K[X:=x^p, Y:=\der^p]$ be its centre. It is proved that $(i)$ the restriction map $\res :\Aut_K(A_1)\ra \Aut_K(Z), \s \mapsto \s|_Z$, is a monomorphism with $\im (\res) = \G :=\{\tau \in \Aut_K(Z) | \CJ (\tau) =1\}$ where $\CJ (\tau) $ is the Jacobian of $\tau$ (note that $\Aut_K(Z)=K^*\ltimes \G$ and if $K$ is {\em not} perfect then $\im (\res) \neq \G$); $(ii)$ the bijection $\res : \Aut_K(A_1) \ra \G$ is a monomorphism of infinite dimensional algebraic groups which is {\em not} an isomorphism (even if $K$ is algebraically closed); $(iii)$ an explicit formula for $\res^{-1}$ is found via differential operators $\CD (Z)$ on $Z$ and negative powers of the Fronenius map $F$. Proofs are based on the following (non-obvious) equality proved in the paper: $$ (\frac{d}{dx}+f)^p= (\frac{d}{dx})^p+\frac{d^{p-1}f}{dx^{p-1}}+f^p, f\in K[x].$$
---
PDF链接:
https://arxiv.org/pdf/0708.1620
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群