摘要翻译:
费米和动能的计算通常采用周期边界条件模型,对于粒子受限的低维问题,这是不自洽的。因此,对于受限粒子,利用势盒模型自洽地计算了3维、2维和1维情况下的费米能和动能。这种方法更加合乎逻辑和自洽。然后导出了忽略维数的条件,即粒子在箱体中的运动可以看作2维和1维的条件。
---
英文标题:
《Some problems of low-dimensional physics》
---
作者:
Yuri Kornyushin
---
最新提交年份:
2012
---
分类信息:
一级分类:Physics        物理学
二级分类:Materials Science        材料科学
分类描述:Techniques, synthesis, characterization, structure.  Structural phase transitions, mechanical properties, phonons. Defects, adsorbates, interfaces
技术,合成,表征,结构。结构相变,力学性质,声子。缺陷,吸附质,界面
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Quantum Physics        量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
  Fermi and kinetic energy are usually calculated in periodic boundary conditions model, which is not self-consistent for low-dimensional problems, where particles are confined. Thus for confined particles the potential box model was used self-consistently to calculate Fermi and kinetic energies in 3-, 2-, and 1-dimensional cases. This approach is much more logical and self-consistent. Then the conditions for neglecting dimensions, that is conditions under which the movement of particles in the box could be considered as 2- and 1- dimensional, were derived. 
---
PDF链接:
https://arxiv.org/pdf/705.1137