摘要翻译:
A$\mathbbq$-conic丛芽是从只有末端奇点的三重形到法面的芽$(Z\ni)$的适当态射,这样纤维是连通的,反正则因子是相对充足的。当基面芽为奇异时,我们得到了$\MathBBq$-锥丛芽的完全分类。这是我们以前的论文Math/0603736的推广,该论文进一步假设超过$O$的纤维是不可约的。
---
英文标题:
《On Q-conic bundles, II》
---
作者:
Shigefumi Mori and Yuri Prokhorov
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A $\mathbb Q$-conic bundle germ is a proper morphism from a threefold with only terminal singularities to the germ $(Z \ni o)$ of a normal surface such that fibers are connected and the anti-canonical divisor is relatively ample. We obtain the complete classification of $\mathbb Q$-conic bundle germs when the base surface germ is singular. This is a generalization of our previous paper math/0603736, which further assumed that the fiber over $o$ is irreducible.
---
PDF链接:
https://arxiv.org/pdf/0710.0792