摘要翻译:
我们完成了拓扑弦的全纯反常方程及其与开模的依赖关系。将BCOV(Commun.Math.Phys.165(1994)311)的分析推广到有边界的字符串,通过标准路径积分变元得到完整的系统。在Wilson线存在的情况下,我们研究了开模和闭模的反全纯依赖关系。通过给出有边界的Riemann曲面模空间的紧致A'la Deligne-Mumford,证明了开全纯反常方程是构造在该空间的(实余维一)边界分量上的。
---
英文标题:
《The holomorphic anomaly for open string moduli》
---
作者:
Giulio Bonelli and Alessandro Tanzini
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We complete the holomorphic anomaly equations for topological strings with their dependence on open moduli. We obtain the complete system by standard path integral arguments generalizing the analysis of BCOV (Commun. Math. Phys. 165 (1994) 311) to strings with boundaries. We study both the anti-holomorphic dependence on open moduli and on closed moduli in presence of Wilson lines. By providing the compactification a' la Deligne-Mumford of the moduli space of Riemann surfaces with boundaries, we show that the open holomorphic anomaly equations are structured on the (real codimension one) boundary components of this space.
---
PDF链接:
https://arxiv.org/pdf/0708.2627