全部版块 我的主页
论坛 经济学人 二区 外文文献专区
278 0
2022-03-07
摘要翻译:
设$n=2,3,4,5$和$x$是$\MathBB p^{n+1}$的光滑复射影超曲面。本文给出了$x$次的一个有效下界,使得$x$中的每一个全纯整曲线必须满足一个阶为$k=n=\dim x$的代数微分方程,以及阶为$k>n$的类似下界。此外,对于每一个整数$n\ge2$,我们证明了在$\mathBB p^{n+1}$中光滑超曲面不存在这样的$k<n$级代数微分方程。
---
英文标题:
《Differential Equations on Complex Projective Hypersurfaces of Low
  Dimension》
---
作者:
Simone Diverio
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--

---
英文摘要:
  Let $n=2,3,4,5$ and let $X$ be a smooth complex projective hypersurface of $\mathbb P^{n+1}$. In this paper we find an effective lower bound for the degree of $X$, such that every holomorphic entire curve in $X$ must satisfy an algebraic differential equation of order $k=n=\dim X$, and also similar bounds for order $k>n$. Moreover, for every integer $n\ge 2$, we show that there are no such algebraic differential equations of order $k<n$ for a smooth hypersurface in $\mathbb P^{n+1}$.
---
PDF链接:
https://arxiv.org/pdf/0706.1031
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群