摘要翻译:
本文分析了几种遗传和进化算法在随机生成的具有不同n和K值的NK适应度景观上的性能。首先对每个n和k生成大量的NK问题实例,并利用分枝定界算法求得每个实例的全局最优解。然后,将分层贝叶斯优化算法(hBOA)、单变量边际分布算法(UMDA)和带有均匀交叉算子和两点交叉算子的简单遗传算法(GA)应用于所有生成的实例。然后对所有算法的性能进行了分析和比较,并对结果进行了讨论。
---
英文标题:
《Analysis of Estimation of Distribution Algorithms and Genetic Algorithms
on NK Landscapes》
---
作者:
Martin Pelikan
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
This study analyzes performance of several genetic and evolutionary algorithms on randomly generated NK fitness landscapes with various values of n and k. A large number of NK problem instances are first generated for each n and k, and the global optimum of each instance is obtained using the branch-and-bound algorithm. Next, the hierarchical Bayesian optimization algorithm (hBOA), the univariate marginal distribution algorithm (UMDA), and the simple genetic algorithm (GA) with uniform and two-point crossover operators are applied to all generated instances. Performance of all algorithms is then analyzed and compared, and the results are discussed.
---
PDF链接:
https://arxiv.org/pdf/0801.3111