摘要翻译:
我们探索了一个基于马尔可夫链的网络计算的简单数学模型。类似的模型适用于广泛的计算现象,如计算机网络、遗传网络、
神经网络、社会网络等。与这些自发演化的计算系统相互作用的主要问题是数据结构不统一。一个有趣的方法是试图从数据在节点间的分布中提取数据的语义内容。然后通过查找共享概念的节点社区来识别概念。因此,数据结构的任务被简化为寻找网络社区的任务,网络社区是一组节点,它们一起执行一些非本地数据处理。为此,我们将排序方法从节点扩展到路径。这允许我们从可用的关于网络的静态信息中提取一些关于可能的流偏差的信息。
---
英文标题:
《Network as a computer: ranking paths to find flows》
---
作者:
Dusko Pavlovic
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Retrieval 信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
We explore a simple mathematical model of network computation, based on Markov chains. Similar models apply to a broad range of computational phenomena, arising in networks of computers, as well as in genetic, and neural nets, in social networks, and so on. The main problem of interaction with such spontaneously evolving computational systems is that the data are not uniformly structured. An interesting approach is to try to extract the semantical content of the data from their distribution among the nodes. A concept is then identified by finding the community of nodes that share it. The task of data structuring is thus reduced to the task of finding the network communities, as groups of nodes that together perform some non-local data processing. Towards this goal, we extend the ranking methods from nodes to paths. This allows us to extract some information about the likely flow biases from the available static information about the network.
---
PDF链接:
https://arxiv.org/pdf/0802.1306