全部版块 我的主页
论坛 经济学人 二区 外文文献专区
721 0
2022-03-07
摘要翻译:
受傅里叶投影切片定理的启发,我们提出了一种多维(M-D)稀疏傅里叶变换,称为FPS-SFT。FPS-SFT从M-D数据立方体中提取沿直线(一维切片)的样本,这些样本由随机斜率和偏移量参数化。沿着这些线的离散傅里叶变换(DFT)表示M-D数据的M-D DFT在这些线上的投影。只要信号在频域中是稀疏的,且线路经过适当的设计,信号中包含的M-D正弦波可以以较低的采样和计算复杂度从DFT沿线路重构。从理论和数值两方面论证了FPS-SFT的性能。最后给出了一个稀疏图像重建的应用实例,说明了FPS-SFT在解决实际问题方面的能力。
---
英文标题:
《FPS-SFT: A Multi-dimensional Sparse Fourier Transform Based on the
  Fourier Projection-slice Theorem》
---
作者:
Shaogang Wang, Vishal M. Patel and Athina Petropulu
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  We propose a multi-dimensional (M-D) sparse Fourier transform inspired by the idea of the Fourier projection-slice theorem, called FPS-SFT. FPS-SFT extracts samples along lines (1-dimensional slices from an M-D data cube), which are parameterized by random slopes and offsets. The discrete Fourier transform (DFT) along those lines represents projections of M-D DFT of the M-D data onto those lines. The M-D sinusoids that are contained in the signal can be reconstructed from the DFT along lines with a low sample and computational complexity provided that the signal is sparse in the frequency domain and the lines are appropriately designed. The performance of FPS-SFT is demonstrated both theoretically and numerically. A sparse image reconstruction application is illustrated, which shows the capability of the FPS-SFT in solving practical problems.
---
PDF链接:
https://arxiv.org/pdf/1711.11407
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群