摘要翻译:
Fourier ptychography捕获具有不同光源模式(照明角度)的强度图像,以便计算重建大空间带宽积图像。准确的照明角度知识对于良好的图像质量是必要的;因此,校准方法是至关重要的,尽管常常不切实际或速度缓慢。在这里,我们提出了一种快速、鲁棒和准确的自校准算法,该算法只使用实验收集的数据和照明设置的一般知识。该算法首先基于图像处理直接估计亮度场的光照角度。然后,在迭代求解器中使用计算量更大的谱相关方法来进一步细化亮场和暗场图像的角度估计。我们用不同的光源类型:一个LED阵列,一个Galvo导向的激光器,和一个高钠准圆顶LED照明器,演示了我们的方法来校正二维和三维傅里叶印刷术中的大和小的失调伪影。
---
英文标题:
《Efficient illumination angle self-calibration in Fourier ptychography》
---
作者:
Regina Eckert, Zachary F. Phillips, Laura Waller
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Fourier ptychography captures intensity images with varying source patterns (illumination angles) in order to computationally reconstruct large space-bandwidth-product images. Accurate knowledge of the illumination angles is necessary for good image quality; hence, calibration methods are crucial, despite often being impractical or slow. Here, we propose a fast, robust, and accurate self-calibration algorithm that uses only experimentally-collected data and general knowledge of the illumination setup. First, our algorithm makes a direct estimate of the brightfield illumination angles based on image processing. Then, a more computationally-intensive spectral correlation method is used inside the iterative solver to further refine the angle estimates of both brightfield and darkfield images. We demonstrate our method for correcting large and small misalignment artifacts in both 2D and 3D Fourier ptychography with different source types: an LED array, a galvo-steered laser, and a high-NA quasi-dome LED illuminator.
---
PDF链接:
https://arxiv.org/pdf/1804.03299