摘要翻译:
研究了点稳定亏零曲线的模空间MBar_{0,n}关于标准对数规范因子K+AD的对数规范模型,其中D表示边界。特别地,我们证明了作为Fulton关于MBar_{0,n}的充分锥猜想的形式结果,这些对数正则模型等于某些Hassett的加权尖曲线空间。
---
英文标题:
《On Log Canonical Models of the Moduli Space of Stable Pointed Curves》
---
作者:
Matthew Simpson
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the log canonical models of the moduli space MBar_{0,n} of pointed stable genus zero curves with respect to the standard log canonical divisors K+aD, where D denotes the boundary. In particular we show that, as a formal consequence of a conjecture by Fulton regarding the ample cone of MBar_{0,n}, these log canonical models are equal to certain of Hassett's weighted pointed curve spaces.
---
PDF链接:
https://arxiv.org/pdf/0709.4037