摘要翻译:
本文介绍了格子气体失平衡的一些随机模型,并对近年来的各种结果进行了讨论。尽管这些模型在微观特征上各不相同,但在宏观层面上正在出现一个统一的图景,在我们看来,它适用于扩散是主要物理机制的真实现象。我们主要依靠作者在研究开系统定态中的动力学大涨落的基础上发展的一种方法。这种方法的结果是通过变分原理将非平衡态热力学与输运系数联系起来的理论。这最终导出了以局部热力学变量为独立变量的非平衡自由能的Hamilton-Jacobi型泛函导数方程。在本文的第一部分,我们详细介绍了所考虑的微观动力学,而第二部分,致力于宏观性质,说明了Hamilton-Jacobi方程的许多结果。在这两个部分中,都包括了一些新奇之处。
---
英文标题:
《Stochastic interacting particle systems out of equilibrium》
---
作者:
L. Bertini, A. De Sole, D. Gabrielli, G. Jona--Lasinio, C. Landim
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified picture is emerging at the macroscopic level, applicable, in our view, to real phenomena where diffusion is the dominating physical mechanism. We rely mainly on an approach developed by the authors based on the study of dynamical large fluctuations in stationary states of open systems. The outcome of this approach is a theory connecting the non equilibrium thermodynamics to the transport coefficients via a variational principle. This leads ultimately to a functional derivative equation of Hamilton-Jacobi type for the non equilibrium free energy in which local thermodynamic variables are the independent arguments. In the first part of the paper we give a detailed introduction to the microscopic dynamics considered, while the second part, devoted to the macroscopic properties, illustrates many consequences of the Hamilton-Jacobi equation. In both parts several novelties are included.
---
PDF链接:
https://arxiv.org/pdf/705.1247