全部版块 我的主页
论坛 经济学人 二区 外文文献专区
295 0
2022-03-07
摘要翻译:
一种常见的对称类型是值是对称的。例如,如果我们在图着色问题中为节点(变量)分配颜色(值),那么我们可以在整个着色过程中均匀地交换颜色。对于一个具有值对称性的问题,可以在多项式时间内消除所有对称解。然而,正如我们在这里所展示的,处理对称性的静态和动态方法都有计算上的局限性。在静态方法中,修剪所有对称值通常是NP困难的。用动态方法,我们可以用指数时间处理静态方法无需搜索就能解决的问题。
---
英文标题:
《Breaking Value Symmetry》
---
作者:
Toby Walsh
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computational Complexity        计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--

---
英文摘要:
  One common type of symmetry is when values are symmetric. For example, if we are assigning colours (values) to nodes (variables) in a graph colouring problem then we can uniformly interchange the colours throughout a colouring. For a problem with value symmetries, all symmetric solutions can be eliminated in polynomial time. However, as we show here, both static and dynamic methods to deal with symmetry have computational limitations. With static methods, pruning all symmetric values is NP-hard in general. With dynamic methods, we can take exponential time on problems which static methods solve without search.
---
PDF链接:
https://arxiv.org/pdf/0903.1146
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群