摘要翻译:
Riemann-Roch定理在紧Riemann曲面的代数几何理论中是最重要的。它告诉我们有多少线性无关的亚纯函数对它们的极点有一定的限制。本文的目的是给出这个定理的一个简单的直接证明,并探讨它的许多结果。我们还给出了黎曼-赫尔维茨公式的解析证明。作为应用,我们计算了一些有趣的代数曲线的亏格。
---
英文标题:
《Le th\'eor\`eme de Riemann-Roch et ses applications》
---
作者:
A. Lesfari
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The Riemann-Roch theorem is of utmost importance in the algebraic geometric theory of compact Riemann surfaces. It tells us how many linearly independent meromorphic functions there are having certain restrictions on their poles. The aim of this article is to present a simple direct proof of this theorem and explore some of its numerous consequences. We also give an analytic proof of the Riemann-Hurwitz formula. As an application, we compute the genus of some interesting algebraic curves.
---
PDF链接:
https://arxiv.org/pdf/0706.2673