摘要翻译:
我们证明了存在一个泛常数$R_3$,使得如果$X$是非负Kodaira维数的三倍光滑射影,则线性系统$R K_X$允许一个与Iitaka纤维化一样快的纤维化,并且是充分可除的。这对Hacon和McKernan在三重条件下的一个猜想给出了肯定的回答。Viehweg和Zhang使用不同的方法在这些方面发布了一个更强的结果。
---
英文标题:
《On a conjecture of Hacon and McKernan in dimension three》
---
作者:
Adam Ringler
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that there exists a universal constant $r_3$ such that if $X$ is a smooth projective threefold over $\mathbb{C}$ with non-negative Kodaira dimension, then the linear system $|r K_X|$ admits a fibration that is birational to the Iitaka fibration as soon as $r \geq r_3$ and sufficiently divisible. This gives an affirmative answer to a conjecture of Hacon and McKernan in the case of threefolds. Viehweg and Zhang have posted a stronger result along these lines using different methods.
---
PDF链接:
https://arxiv.org/pdf/0708.3662