摘要翻译:
测量技术的空前强大提供了对生命系统深处的详细、多尺度的观察。理解这些高维数据的雪崩--通过提取潜在的原理和机制--需要降维。我们认为,生命系统通过进化和表型可塑性来学习一个非随机的、平滑的物理现实的相关方面,从而实现了精巧的维度缩减,这源于它们的能力。我们解释了数学家的几何洞察力如何让人们识别这些真正的生命特征,并将它们与一般数据集的普遍属性区分开来。我们用一个蛋白质进化的具体例子来说明这些原理,提出了一个简单的通用食谱,可以应用于理解其他生物系统。
---
英文标题:
《Dimensional Reduction in Complex Living Systems: Where, Why, and How》
---
作者:
Jean-Pierre Eckmann and Tsvi Tlusty
---
最新提交年份:
2021
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
---
英文摘要:
The unprecedented prowess of measurement techniques provides a detailed, multi-scale look into the depths of living systems. Understanding these avalanches of high-dimensional data -- by distilling underlying principles and mechanisms -- necessitates dimensional reduction. We propose that living systems achieve exquisite dimensional reduction, originating from their capacity to learn, through evolution and phenotypic plasticity, the relevant aspects of a non-random, smooth physical reality. We explain how geometric insights by mathematicians allow one to identify these genuine hallmarks of life and distinguish them from universal properties of generic data sets. We illustrate these principles in a concrete example of protein evolution, suggesting a simple general recipe that can be applied to understand other biological systems.
---
PDF链接:
https://arxiv.org/pdf/2103.02436