全部版块 我的主页
论坛 经济学人 二区 外文文献专区
338 0
2022-03-07
摘要翻译:
近年来,人工智能(AI)决策和自治系统已经成为经济、工业和社会的一个有机组成部分。人类-人工智能生态系统的经济发展引起了人们对人工智能系统中继承的风险和价值的关注。本文考察了价值创造和交换的动力,指出了在成本-价值、知识、空间和时间维度感知上的差距。它显示了人工智能系统中编码的人类对成就和成本的看法中的价值偏见。本文还提出了在可信机器开发过程中,从效率和效率的角度重新思考硬目标、定义和成本最优问题解决原则。本文提出了一种价值驱动和成本意识的策略和原则,用于解决问题和规划有效的研究进展,以解决涉及不同形式的成就、投资和生存情景的现实世界问题。
---
英文标题:
《Economics of Human-AI Ecosystem: Value Bias and Lost Utility in
  Multi-Dimensional Gaps》
---
作者:
Daniel Muller
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Economics        经济学
二级分类:General Economics        一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance        数量金融学
二级分类:Economics        经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--

---
英文摘要:
  In recent years, artificial intelligence (AI) decision-making and autonomous systems became an integrated part of the economy, industry, and society. The evolving economy of the human-AI ecosystem raising concerns regarding the risks and values inherited in AI systems. This paper investigates the dynamics of creation and exchange of values and points out gaps in perception of cost-value, knowledge, space and time dimensions. It shows aspects of value bias in human perception of achievements and costs that encoded in AI systems. It also proposes rethinking hard goals definitions and cost-optimal problem-solving principles in the lens of effectiveness and efficiency in the development of trusted machines. The paper suggests a value-driven with cost awareness strategy and principles for problem-solving and planning of effective research progress to address real-world problems that involve diverse forms of achievements, investments, and survival scenarios.
---
PDF链接:
https://arxiv.org/pdf/1811.06606
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群