摘要翻译:
本文续写arxiv.org:math.ag/0609256、arxiv:0708.3991和arxiv:0710.0162。利用作者1980、1981年的方法,定义了维数至少为3的算术双曲反射群的所有基场的数域的显式有限集,并得到了它们的次数(在Q上)的显式界。因此,在所有维度上,算术双曲反射群的地场度的显式界是已知的。因此,原则上,我们可以一起获得所有维的算术双曲反射群的有效有限分类。
---
英文标题:
《On ground fields of arithmetic hyperbolic reflection groups. III》
---
作者:
Viacheslav V. Nikulin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
This paper continues arXiv.org:math.AG/0609256, arXiv:0708.3991 and arXiv:0710.0162 . Using authors's methods of 1980, 1981, some explicit finite sets of number fields containing all ground fields of arithmetic hyperbolic reflection groups in dimension at least 3 are defined, and explicit bounds of their degrees (over Q) are obtained. Thus, now, explicit bound of degree of ground fields of arithmetic hyperbolic reflection groups is known in all dimensions. Thus, now, we can, in principle, obtain effective finite classification of arithmetic hyperbolic reflection groups in all dimensions together.
---
PDF链接:
https://arxiv.org/pdf/0710.2340