摘要翻译:
本文推广了[4]}的稳定性结果,将效用最大化问题定义为财富过程的终值的条件期望的本质上确界,条件是在停止时刻$\tau$处的过滤。为了建立我们的结果,我们将凸分析的经典结果推广到从$l^0$到$l^0$的映射。在我们的分析中,凸紧性的概念起了重要作用。
---
英文标题:
《On the Stability of Utility Maximization Problems》
---
作者:
Erhan Bayraktar, Ross Kravitz
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
In this paper we extend the stability results of [4]}. Our utility maximization problem is defined as an essential supremum of conditional expectations of the terminal values of wealth processes, conditioned on the filtration at the stopping time $\tau$. To establish our results, we extend the classical results of convex analysis to maps from $L^0$ to $L^0$. The notion of convex compactness introduced in [7] plays an important role in our analysis.
---
PDF链接:
https://arxiv.org/pdf/1010.4322