摘要翻译:
在L\'Evy过程驱动的市场中,我们重新讨论了Merton在状态依赖效用函数下的投资组合优化问题,推广了Karatzas等人的结果。Al.(1991)和Kunita(2003)。这个问题是用一个对偶变分问题来解决的,就像通常对非马尔可夫模型所做的那样。这里的一个主要特征是对偶问题的定义域具有一个显式的“参数化”,它建立在F\\Ollmer和Kramkov(1997)关于非负上鞅的乘法可选分解上。作为得到表示结果的一个关键步骤,我们证明了积分关于泊松随机测度的一个闭包性质,这是M\'Emin(1980)关于固定半鞅的积分的模拟性质的推广。对于一个过程$\zeta$和一个确定性函数$\vartheta$,我们显式地刻画了交易策略的可容许性,并证明了对偶解是一个风险中性的局部鞅,且对偶测度是有限原子数的原子,或对偶测度为$\delta S_{t}/S_{t^{-}}=\zeta_{t}\vartheta(\delta Z_{t}).
---
英文标题:
《State-dependent utility maximization in L\'evy markets》
---
作者:
Jose E. Figueroa-Lopez and Jin Ma
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We revisit Merton's portfolio optimization problem under boun-ded state-dependent utility functions, in a market driven by a L\'evy process $Z$ extending results by Karatzas et. al. (1991) and Kunita (2003). The problem is solved using a dual variational problem as it is customarily done for non-Markovian models. One of the main features here is that the domain of the dual problem enjoys an explicit "parametrization", built on a multiplicative optional decomposition for nonnegative supermartingales due to F\"ollmer and Kramkov (1997). As a key step in obtaining the representation result we prove a closure property for integrals with respect to Poisson random measures, a result of interest on its own that extends the analog property for integrals with respect to a fixed semimartingale due to M\'emin (1980). In the case that (i) the L\'evy measure of $Z$ is atomic with a finite number of atoms or that (ii) $\Delta S_{t}/S_{t^{-}}=\zeta_{t} \vartheta(\Delta Z_{t})$ for a process $\zeta$ and a deterministic function $\vartheta$, we explicitly characterize the admissible trading strategies and show that the dual solution is a risk-neutral local martingale.
---
PDF链接:
https://arxiv.org/pdf/0901.2070