全部版块 我的主页
论坛 经济学人 二区 外文文献专区
226 0
2022-03-07
摘要翻译:
再次讨论了亚椭圆扩散$(x^1,...,x^d)$的密度展开式。特别是,我们对投影$(x_t^1,...,x_t^l)$的密度展开感兴趣,在$t>0$时,使用$l\leq d$。找到了取代热核渐近中已知的“不在切点内”条件的全局条件。我们的小噪声扩展允许一个“二阶”指数因子。作为应用,布朗运动的Takanobu-Watanabe展开式和Levy随机区域得到了新的启示。进一步的应用包括一些随机波动率模型中的尾部和隐含波动率渐近,在一篇论文中讨论了这一点。
---
英文标题:
《Marginal density expansions for diffusions and stochastic volatility,
  part I: Theoretical Foundations》
---
作者:
J. D. Deuschel, P. K. Friz, A. Jacquier, S. Violante
---
最新提交年份:
2013
---
分类信息:

一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--

---
英文摘要:
  Density expansions for hypoelliptic diffusions $(X^1,...,X^d)$ are revisited. In particular, we are interested in density expansions of the projection $(X_T^1,...,X_T^l)$, at time $T>0$, with $l \leq d$. Global conditions are found which replace the well-known "not-in-cutlocus" condition known from heat-kernel asymptotics. Our small noise expansion allows for a "second order" exponential factor. As application, new light is shed on the Takanobu--Watanabe expansion of Brownian motion and Levy's stochastic area. Further applications include tail and implied volatility asymptotics in some stochastic volatility models, discussed in a compagnion paper.
---
PDF链接:
https://arxiv.org/pdf/1111.2462
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群