摘要翻译:
本文提出了一个研究一般对称矩阵{bf H}0$的连续特征向量构成的子空间的稳定性的一般框架,当附加小扰动时,该子空间的稳定性是由一般对称矩阵{bf H}0$的连续特征向量构成的。这个问题在各种情况下都是相关的,包括量子耗散(${\bf H}0$是哈密顿量)和风险控制(在这种情况下${\bf H}0$是资产收益相关矩阵)。我们将我们的结果专门用于高斯正交的${\bf H}_0$或当${\bf H}_0$是相关矩阵时。我们使用财务数据来说明我们的框架的有用性。
---
英文标题:
《Eigenvector dynamics: theory and some applications》
---
作者:
Romain Allez, Jean-Philippe Bouchaud
---
最新提交年份:
2011
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
英文摘要:
We propose a general framework to study the stability of the subspace spanned by $P$ consecutive eigenvectors of a generic symmetric matrix ${\bf H}_0$, when a small perturbation is added. This problem is relevant in various contexts, including quantum dissipation (${\bf H}_0$ is then the Hamiltonian) and risk control (in which case ${\bf H}_0$ is the assets return correlation matrix). We specialize our results for the case of a Gaussian Orthogonal ${\bf H}_0$, or when ${\bf H}_0$ is a correlation matrix. We illustrate the usefulness of our framework using financial data.
---
PDF链接:
https://arxiv.org/pdf/1108.4258