全部版块 我的主页
论坛 经济学人 二区 外文文献专区
729 0
2022-03-07
摘要翻译:
在无限阶自回归(AR($infty$))模型中,研究了Rissanen累积预测误差(APE)准则的一种改进APE$_{\\delta_n}$的预测能力。APE$_{\\delta_n}$不是从一开始就累加顺序预测误差的平方,而是通过对阶段$n\delta_n$中的这些平方误差求和来获得,其中$n$是样本量,$1/n\leq\delta_n\leq1-(1/n)$可能取决于$n$。在一定的正则性条件下,给出了阶数为APE$_{\\delta_n}$的AR预测器的均方预测误差(MSPE)的渐近表达式。该表达式表明,APE$_{\delta_n}$的预测性能可能会因$\delta_n$的选择而发生显著变化。另一个有趣的发现是,当$\delta_n$以一定的速率接近1时,ape$_{\delta_n}$在大多数实际情况下都能达到渐近效率。从MSPE的观点出发,建立了APE$_{\\delta_n}$与一个带有适当惩罚项的信息准则的渐近等价性。这为理解基于信息和预测的模型选择标准提供了新的视角。最后,对于允许AR($\infty$)模型退化为有限自回归的情形,我们给出了第一个渐近效率的结果。
---
英文标题:
《Accumulated prediction errors, information criteria and optimal
  forecasting for autoregressive time series》
---
作者:
Ching-Kang Ing
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  The predictive capability of a modification of Rissanen's accumulated prediction error (APE) criterion, APE$_{\delta_n}$, is investigated in infinite-order autoregressive (AR($\infty$)) models. Instead of accumulating squares of sequential prediction errors from the beginning, APE$_{\delta_n}$ is obtained by summing these squared errors from stage $n\delta_n$, where $n$ is the sample size and $1/n\leq \delta_n\leq 1-(1/n)$ may depend on $n$. Under certain regularity conditions, an asymptotic expression is derived for the mean-squared prediction error (MSPE) of an AR predictor with order determined by APE$_{\delta_n}$. This expression shows that the prediction performance of APE$_{\delta_n}$ can vary dramatically depending on the choice of $\delta_n$. Another interesting finding is that when $\delta_n$ approaches 1 at a certain rate, APE$_{\delta_n}$ can achieve asymptotic efficiency in most practical situations. An asymptotic equivalence between APE$_{\delta_n}$ and an information criterion with a suitable penalty term is also established from the MSPE point of view. This offers new perspectives for understanding the information and prediction-based model selection criteria. Finally, we provide the first asymptotic efficiency result for the case when the underlying AR($\infty$) model is allowed to degenerate to a finite autoregression.
---
PDF链接:
https://arxiv.org/pdf/708.2373
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群