摘要翻译:
设g是微分次李代数,假定g的链复形压缩到一般链复形M上,我们证明了该数据决定了M上的一个sh-Lie代数结构,即余代数微分在余增微分分次余交换余代数上的余代数微扰,从摄动余代数S“到给定李代数g的一个李代数扭余链,以及将这个李代数扭余链推广为从g上的Cartan-Chevalley-Eilenberg余代数到S”的链复的压缩,这在数据中是自然的。这推广了作者与J.Stashef[Forum Math.14(2002),847-868,Math.AG/9906036]的一篇联合论文中的一个结果,其中只讨论了M是g的同调的特例。
---
英文标题:
《The Lie algebra perturbation lemma》
---
作者:
Johannes Huebschmann (Universite de Lille 1)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Let g be a differential graded Lie algebra and suppose given a contraction of chain complexes of g onto a general chain complex M. We show that the data determine an sh-Lie algebra structure on M, that is, a coalgebra perturbation of the coalgebra differential on the cofree coaugmented differential graded cocommutative coalgebra S' on the suspension of M, a Lie algebra twisting cochain from the perturbed coalgebra S" to the given Lie algebra g, and an extension of this Lie algebra twisting cochain to a contraction of chain complexes from the Cartan-Chevalley-Eilenberg coalgebra on g onto S" which is natural in the data. This extends a result established in a joint paper of the author with J. Stashef [Forum math. 14 (2002), 847-868, math.AG/9906036] where only the particular where M is the homology of g has been explored.
---
PDF链接:
https://arxiv.org/pdf/0708.3977