摘要翻译:
对于光滑测试构型,在Kahler度量空间中总是存在平行于代数射线的C^{1,1}测地射线。至少在良好的假设下,$\yen$不变量与Futaki不变量是一致的。计算了圆柱面情况下的显式算例。在简单的测试构型上,推广了HCMA解与全纯圆盘族之间的Donaldson对应关系。
---
英文标题:
《Test configurations and Geodesic rays》
---
作者:
Xiuxiong Chen, Yudong Tang
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For smooth test configurations, there always exist C^{1,1} geodesic rays in Kahler metric space parallel to the algebraic ray. The $\yen$ invariant agrees with Futaki invariant, at least under nice assumptions. Explicit examples in Toric cases are calculated. On simple test configurations, Donaldson's correspondence between HCMA solution and holomorphic disc family is extended.
---
PDF链接:
https://arxiv.org/pdf/0707.4149