全部版块 我的主页
论坛 经济学人 二区 外文文献专区
352 0
2022-03-04
摘要翻译:
对于光滑测试构型,在Kahler度量空间中总是存在平行于代数射线的C^{1,1}测地射线。至少在良好的假设下,$\yen$不变量与Futaki不变量是一致的。计算了圆柱面情况下的显式算例。在简单的测试构型上,推广了HCMA解与全纯圆盘族之间的Donaldson对应关系。
---
英文标题:
《Test configurations and Geodesic rays》
---
作者:
Xiuxiong Chen, Yudong Tang
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  For smooth test configurations, there always exist C^{1,1} geodesic rays in Kahler metric space parallel to the algebraic ray. The $\yen$ invariant agrees with Futaki invariant, at least under nice assumptions. Explicit examples in Toric cases are calculated. On simple test configurations, Donaldson's correspondence between HCMA solution and holomorphic disc family is extended.
---
PDF链接:
https://arxiv.org/pdf/0707.4149
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群