摘要翻译:
本文研究了圆上的连续时间随机游动问题。我们导出了相应的广义主方程,并讨论了拓扑结构的影响,尤其是在允许Levy飞行的情况下。然后,我们用分数阶Riemann-Liouville算子的周期形式导出了流体极限方程,并给出了它的显式表达式。最后,我们计算了一些简单情况下的传播子。本文提出的分析在研究周期维数系统中的反常输运现象时应该是相关的。
---
英文标题:
《Continuous Time Random Walks in periodic systems: fluid limit and
fractional differential equations on the circle》
---
作者:
Ivan Calvo, B. A. Carreras, R. Sanchez, B. Ph. van Milligen
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In this article, the continuous time random walk on the circle is studied. We derive the corresponding generalized master equation and discuss the effects of topology, especially important when Levy flights are allowed. Then, we work out the fluid limit equation, formulated in terms of the periodic version of the fractional Riemann-Liouville operators, for which we provide explicit expressions. Finally, we compute the propagator in some simple cases. The analysis presented herein should be relevant when investigating anomalous transport phenomena in systems with periodic dimensions.
---
PDF链接:
https://arxiv.org/pdf/708.3213