摘要翻译:
设$T$是一个一般的抽样统计量,可以写成线性统计量加上一个误差项。得到了$T$的一致和非一致Berry-Esseen型界。对于许多已知的统计数据来说,边界是最好的。讨论了非线性统计量在U-统计量、多采样U-统计量、L-统计量、随机和及函数等方面的应用。
---
英文标题:
《Normal approximation for nonlinear statistics using a concentration
inequality approach》
---
作者:
Louis H.Y. Chen, Qi-Man Shao
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Let $T$ be a general sampling statistic that can be written as a linear statistic plus an error term. Uniform and non-uniform Berry--Esseen type bounds for $T$ are obtained. The bounds are the best possible for many known statistics. Applications to U-statistics, multisample U-statistics, L-statistics, random sums and functions of nonlinear statistics are discussed.
---
PDF链接:
https://arxiv.org/pdf/708.4272