摘要翻译:
理想$\a$相对于理想$j$的F阈值$C^j(\a)$是通过比较$\a$的幂与$j$的Frobenius幂而得到的正特征不变量。我们证明了在温和的假设下,我们可以用F-阈值检测参数理想的整闭包或紧闭包中的包容。当$\a$和$J$是零维理想,并且$J$是由一个参数系统生成时,我们根据多重性$e(\a)$和$e(J)$构造了一个有界$c^J(\a)$的猜想。证明了当$J$是多项式环中的单理想时,以及当$a$和$J$是由Cohen-Macaulay分次$K$-代数中的齐次参数系统生成时的猜想。
---
英文标题:
《F-thresholds, tight closure, integral closure, and multiplicity bounds》
---
作者:
Craig Huneke, Mircea Mustata, Shunsuke Takagi and Kei-ichi Watanabe
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  The F-threshold $c^J(\a)$ of an ideal $\a$ with respect to the ideal $J$ is a positive characteristic invariant obtained by comparing the powers of $\a$ with the Frobenius powers of $J$. We show that under mild assumptions, we can detect the containment in the integral closure or the tight closure of a parameter ideal using F-thresholds. We formulate a conjecture bounding $c^J(\a)$ in terms of the multiplicities $e(\a)$ and $e(J)$, when $\a$ and $J$ are zero-dimensional ideals, and $J$ is generated by a system of parameters. We prove the conjecture when $J$ is a monomial ideal in a polynomial ring, and also when $\a$ and $J$ are generated by homogeneous systems of parameters in a Cohen-Macaulay graded $k$-algebra. 
---
PDF链接:
https://arxiv.org/pdf/0708.2394