全部版块 我的主页
论坛 经济学人 二区 外文文献专区
531 0
2022-03-07
摘要翻译:
本文给出了连续受控HJB方程和HJB障碍问题数值解的一种新的惩罚方法。我们的结果包括对一类惩罚项的惩罚误差的估计,并证明了牛顿法的变分可以用来获得惩罚方程的全局收敛迭代解。此外,我们还讨论了在什么条件下迭代解的局部二次收敛性。我们包括数值结果,证明了我们的方法的竞争力。
---
英文标题:
《Penalty Methods for the Solution of Discrete HJB Equations -- Continuous
  Control and Obstacle Problems》
---
作者:
Jan Hendrik Witte and Christoph Reisinger
---
最新提交年份:
2011
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics        数学
二级分类:Numerical Analysis        数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--

---
英文摘要:
  In this paper, we present a novel penalty approach for the numerical solution of continuously controlled HJB equations and HJB obstacle problems. Our results include estimates of the penalisation error for a class of penalty terms, and we show that variations of Newton's method can be used to obtain globally convergent iterative solvers for the penalised equations. Furthermore, we discuss under what conditions local quadratic convergence of the iterative solvers can be expected. We include numerical results demonstrating the competitiveness of our methods.
---
PDF链接:
https://arxiv.org/pdf/1105.5954
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群