全部版块 我的主页
论坛 经济学人 二区 外文文献专区
188 0
2022-03-07
摘要翻译:
我们研究了最近提出的一个非马尔可夫随机游动模型,其特征是最近过去的记忆丢失和遗忘诱导的持久性。我们给出了由四个相组成的完整相图:(i)经典非持久性,(ii)经典持久性,(iii)对数周期非持久性和(iv)负反馈驱动的对数周期持久性。前两个相具有连续的尺度不变对称性,而对数周期破坏了这种对称性。相反,对数周期运动满足离散尺度不变对称性,具有复杂而非真实的分形维数。对于对数周期持久性,我们不仅发现了统计上的自相似性,而且还发现了几何上的自相似性。
---
英文标题:
《Spontaneous symmetry breaking in amnestically induced persistence》
---
作者:
Marco Antonio Alves da Silva, A. S. Ferreira, G. M. Viswanathan and J.
  C. Cressoni
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of 4 phases, for this system: (i) classical nonpersistence, (ii) classical persistence (iii) log-periodic nonpersistence and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
---
PDF链接:
https://arxiv.org/pdf/708.3102
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群