摘要翻译:
本文提出了一种分析艺术家线条画中笔画的计算方法。我们的目标是开发一种
人工智能方法,以一种不容易被伪造的艺术欺骗的方式方便未知作者的画的归属。所使用的方法是基于对图纸中单个笔画的特征进行量化。我们提出了一种新的分割单个笔画的算法。我们设计并比较了不同的手工制作和学习的特征,用于量化中风特征的任务。我们还提出并比较了不同的图层分类方法。我们用一个300多个数字化图纸的数据集进行了实验,这些图纸有8万多个笔画。收藏主要包括巴勃罗·毕加索、亨利·马蒂斯和埃贡·席勒的绘画,此外还有少量其他艺术家的代表作。实验结果表明,该方法对单个笔画的分类准确率可达70%-90%,对多幅图的分类准确率可达80%以上,同时具有较强的抗假冒能力(在大多数情况下检测假冒的准确率为100%)。
---
英文标题:
《Picasso, Matisse, or a Fake? Automated Analysis of Drawings at the
Stroke Level for Attribution and Authentication》
---
作者:
Ahmed Elgammal, Yan Kang, Milko Den Leeuw
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
This paper proposes a computational approach for analysis of strokes in line drawings by artists. We aim at developing an AI methodology that facilitates attribution of drawings of unknown authors in a way that is not easy to be deceived by forged art. The methodology used is based on quantifying the characteristics of individual strokes in drawings. We propose a novel algorithm for segmenting individual strokes. We designed and compared different hand-crafted and learned features for the task of quantifying stroke characteristics. We also propose and compare different classification methods at the drawing level. We experimented with a dataset of 300 digitized drawings with over 80 thousands strokes. The collection mainly consisted of drawings of Pablo Picasso, Henry Matisse, and Egon Schiele, besides a small number of representative works of other artists. The experiments shows that the proposed methodology can classify individual strokes with accuracy 70%-90%, and aggregate over drawings with accuracy above 80%, while being robust to be deceived by fakes (with accuracy 100% for detecting fakes in most settings).
---
PDF链接:
https://arxiv.org/pdf/1711.03536