摘要翻译:
设λ是一个数值半群。假设GF(q)上存在一个具有有理位置的代数函数域,它的Weierstrass半群为λ。我们提出这样一个函数域可能有多少个有理位置的问题,我们根据λ和q的生成元导出了一个上界。我们的界是对Lewittes的界的改进,它只考虑了λ和q的多重性。在Q=2,3和4的情况下,我们对Serre的上界进行了改进。最后证明了Lewittes界对函数场塔理论的重要意义。
---
英文标题:
《Bounding the number of rational places using Weierstrass semigroups》
---
作者:
Olav Geil and Ryutaroh Matsumoto
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
  Let Lambda be a numerical semigroup. Assume there exists an algebraic function field over GF(q) in one variable which possesses a rational place that has Lambda as its Weierstrass semigroup. We ask the question as to how many rational places such a function field can possibly have and we derive an upper bound in terms of the generators of Lambda and q. Our bound is an improvement to a bound by Lewittes which takes into account only the multiplicity of Lambda and q. From the new bound we derive significant improvements to Serre's upper bound in the cases q=2, 3 and 4. We finally show that Lewittes' bound has important implications to the theory of towers of function fields. 
---
PDF链接:
https://arxiv.org/pdf/0710.4662