摘要翻译:
研究了一个以函数数据为输入、标量响应的非线性回归模型。提出了用局部线性方法将Hilbert空间映射到实线上的回归函数的逐点估计。我们给出了渐近均方误差。计算涉及线性反问题以及数据的小球概率的表示,并基于该领域的最新进展。我们的估计的收敛速度超过了文献中关于这个模型的已经得到的。
---
英文标题:
《Local linear regression for functional data》
---
作者:
Alain Berlinet (I3M), Abdallah Elamine (I3M), Andr\'e Mas (I3M)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We study a non linear regression model with functional data as inputs and scalar response. We propose a pointwise estimate of the regression function that maps a Hilbert space onto the real line by a local linear method. We provide the asymptotic mean square error. Computations involve a linear inverse problem as well as a representation of the small ball probability of the data and are based on recent advances in this area. The rate of convergence of our estimate outperforms those already obtained in the literature on this model.
---
PDF链接:
https://arxiv.org/pdf/710.5218