全部版块 我的主页
论坛 经济学人 二区 外文文献专区
255 0
2022-03-07
摘要翻译:
用基于平均场的统计方法计算了均相和稀玻色气体在D维($2\led\le3$)的相变温度。相变温度的移动顺序为:$\ΔT_C/T_C^0=c\Gam^{\Al}$,其中$\Gam=n^{1/3}A$。我们在广义维数下导出了Huang的相变温度的结果。我们证明在短波长范围内,$c(D)$为正,$\al(D)=2(D/2-1)^2$。讨论了d=3时$al=1/2$与$al=1$之差的来源。在d=2处的$t_c$也用同样的方案计算。并与Fisher和Hohenberg的KT温度进行了比较。
---
英文标题:
《Transition temperature of the homogeneous and dilute Bose gas in
  D-dimensions》
---
作者:
Sang-Hoon Kim
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  The phase transition temperature of the homogeneous and dilute Bose gas in D-dimensions ($2 \le D \le 3$) is calculated by a mean field-based statistical method. The shift of the phase transition temperature is written up to the leading order as $\Delta T_c/T_c^0 = c \gam^{\al}$, where $\gam=n^{1/3}a$.   We derived Huang's result of the phase transition temperature in the generalized dimensions. We show that $ c(D)$ is positive and $\al(D)=2(D/2-1)^2$ in the short-wavelength range. The origin of the difference between $\al=1/2$ and $\al=1$ at D=3 is discussed. The $T_c$ at D=2 is calculated in the same scheme. The result is compared with Fisher and Hohenberg's KT temperature.
---
PDF链接:
https://arxiv.org/pdf/707.1538
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群