摘要翻译:
设$O_x$(resp.$D_x$)是$x$(=复仿射n-空间)上的全纯函数簇(resp.n-空间上的具有全纯系数的线性微分算子簇)。设$y$是由多项式$f$定义的局部弱拟齐次自由因子。本文局部证明了$1/f^k$上$d_x$的湮没理想是由1阶线性微分算子生成的(对于$k$足够大)。为此,我们证明了对数$D_x$-模的扩张群的一个消失定理。对数的$d_x$--模块自然与$y$相关联。这个结果与所谓的对数比较定理有关。
---
英文标题:
《A vanishing theorem for a class of logarithmic D-modules》
---
作者:
F.J. Castro-Jimenez (1), J. Gago (1), M.I. Hartillo-Hermoso (2) and
J.M. Ucha (1)((1) University of Seville, (2) University of Cadiz)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $O_X$ (resp. $D_X$) be the sheaf of holomorphic functions (resp. the sheaf of linear differential operators with holomorphic coefficients) on $X$ (=the complex affine n-space). Let $Y$ be a locally weakly quasi-homogeneous free divisor defined by a polynomial $f$. In this paper we prove that, locally, the annihilating ideal of $1/f^k$ over $D_X$ is generated by linear differential operators of order 1 (for $k$ big enough). For this purpose we prove a vanishing theorem for the extension groups of a certain logarithmic $D_X$--module with $O_X$. The logarithmic $D_X$--module is naturally associated with $Y$. This result is related to the so called Logarithmic Comparison Theorem.
---
PDF链接:
https://arxiv.org/pdf/0707.1000