全部版块 我的主页
论坛 经济学人 二区 外文文献专区
473 0
2022-03-07
摘要翻译:
在无线声传感器网络(WASNs)中,由于传感器通常是电池驱动的,所以通常具有有限的能量预算。因此,能量效率对WASNS算法的设计至关重要。降低能源成本的一种方法是只选择信息最丰富的传感器,这是一个称为{\IT传感器选择}的问题。这样,只涉及对手头任务有显著贡献的传感器。在这项工作中,我们考虑了一种更普遍的方法,它是基于速率分布的空间滤波。比特率和传输距离直接影响能量消耗。我们尽量减少电池使用由于传输,同时约束降噪性能。这就产生了一种有效的速率分配策略,它依赖于潜在的信号统计信息,以及从传感器到融合中心(FC)的距离。在采用线性约束最小方差(LCMV)波束形成器的情况下,将该问题归结为一个半定程序。此外,我们还证明了速率分配比传感器选择更一般,传感器选择可以看作速率分配解决方案的一个特例,例如,最佳麦克风子集可以通过对速率进行阈值化来确定。最后,对多个目标源的估计应用进行了数值模拟,结果表明,该方法在能量消耗方面优于基于麦克风子集选择的方法,并且发现靠近FC和靠近点源的传感器具有更高的分配速率。
---
英文标题:
《Rate-Distributed Spatial Filtering Based Noise Reduction in Wireless
  Acoustic Sensor Networks》
---
作者:
Jie Zhang, Richard Heusdens, and Richard C. Hendriks
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  In wireless acoustic sensor networks (WASNs), sensors typically have a limited energy budget as they are often battery driven. Energy efficiency is therefore essential to the design of algorithms in WASNs. One way to reduce energy costs is to only select the sensors which are most informative, a problem known as {\it sensor selection}. In this way, only sensors that significantly contribute to the task at hand will be involved. In this work, we consider a more general approach, which is based on rate-distributed spatial filtering. Together with the distance over which transmission takes place, bit rate directly influences the energy consumption. We try to minimize the battery usage due to transmission, while constraining the noise reduction performance. This results in an efficient rate allocation strategy, which depends on the underlying signal statistics, as well as the distance from sensors to a fusion center (FC). Under the utilization of a linearly constrained minimum variance (LCMV) beamformer, the problem is derived as a semi-definite program. Furthermore, we show that rate allocation is more general than sensor selection, and sensor selection can be seen as a special case of the presented rate-allocation solution, e.g., the best microphone subset can be determined by thresholding the rates. Finally, numerical simulations for the application of estimating several target sources in a WASN demonstrate that the proposed method outperforms the microphone subset selection based approaches in the sense of energy usage, and we find that the sensors close to the FC and close to point sources are allocated with higher rates.
---
PDF链接:
https://arxiv.org/pdf/1712.07941
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群