摘要翻译:
研究了低亏格K3曲面上节点曲线的模性质。证明了一般亏格g曲线C是位于2p-2次基元极化K3曲面S上的d-节点曲线X的归一化,当p为3-11之间的任意整数时,g=p-d为2-p之间。这一证明是基于从对(S,X)的叠到g的模空间的映射的局部变形理论分析,该映射与X的归一化同构类[C]有关。
---
英文标题:
《Nodal curves with general moduli on K3 surfaces》
---
作者:
Flaminio Flamini, Andreas L. Knutsen, Gianluca Pacienza and Edoardo
Sernesi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We investigate the modular properties of nodal curves on a low genus K3 surface. We prove that a general genus g curve C is the normalization of a d-nodal curve X sitting on a primitively polarized K3 surface S of degree 2p-2, for p any integer between 3 and 11 and g = p - d between 2 and p. The proof is based on a local deformation-theoretic analysis of the map from the stack of pairs (S,X) to the moduli space of curves of genus g that associates to X the isomorphism class [C] of its normalization.
---
PDF链接:
https://arxiv.org/pdf/0707.0157