摘要翻译:
本文证明了伴随丛的一个非消失陈述,以及伴随丛极小奇性度量的几个性质。我们的论点涉及Y.-T.的许多想法。Siu的正则环有限生成的解析证明。一个重要的技术工具是两个闭合正电流相对于一个量度的相对临界指数的概念。
---
英文标题:
《Relative critical exponents, non-vanishing and metrics with minimal
singularities》
---
作者:
Mihai Paun
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this article we prove a non-vanishing statement, as well as several properties of metrics with minimal singularities of adjoint bundles. Our arguments involve many ideas from Y.-T. Siu's analytic proof of the finite generation of the canonical ring. An important technical tool is the notion of relative critical exponent of two closed positive currents with respect to a measure.
---
PDF链接:
https://arxiv.org/pdf/0807.3109