全部版块 我的主页
论坛 经济学人 二区 外文文献专区
371 0
2022-03-11
摘要翻译:
设$V$是一般类型的复非奇异投影3重。我们将给出一个详细的分类,直到一篮子奇点在$v$的极小模型上。我们证明了$V$的$M$-规范映射对于所有$M\geq73$是双生的,规范卷$\text{Vol}(V)\geq{1/2660}$。当$\chi(\mathcal{O}_V)\leq1$时,我们的结果是$\text{Vol}(V)\geq{1/420}$,这是最优的。论文还包括了其他有效的结果。
---
英文标题:
《Explicit birational geometry of 3-folds of general type, II》
---
作者:
Jungkai A. Chen, Meng Chen
---
最新提交年份:
2010
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--

---
英文摘要:
  Let $V$ be a complex nonsingular projective 3-fold of general type. We shall give a detailed classification up to baskets of singularities on a minimal model of $V$. We show that the $m$-canonical map of $V$ is birational for all $m\geq 73$ and that the canonical volume $\text{Vol}(V)\geq {1/2660}$. When $\chi(\mathcal{O}_V)\leq 1$, our result is $\text{Vol}(V)\geq {1/420}$, which is optimal. Other effective results are also included in the paper.
---
PDF链接:
https://arxiv.org/pdf/0810.5044
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群