摘要翻译:
我们证明了Noguchi和Winkelmann的结果的非阿基米德类比,这些结果显示了刚性解析映射的代数退化性到射影簇,射影簇的Neron-Severi群中省略了一个有效因子,该因子相对于它们生成的群的秩具有足够多的不可约分量。
---
英文标题:
《Algebraic Degeneracy of Non-Archimedean Analytic Maps》
---
作者:
Ta Thi Hoai An, William Cherry, and Julie Tzu-Yueh Wang
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We prove non-Archimedean analogs of results of Noguchi and Winkelmann showing algebraic degeneracy of rigid analytic maps to projective varieties omitting an effective divisor with sufficiently many irreducible components relative to the rank of the group they generate in the Neron-Severi group of the variety.
---
PDF链接:
https://arxiv.org/pdf/0708.0401