摘要翻译:
Zagier引入了环向自守形式来研究zeta函数的零点:如果GL2上的自守形式的右平移积分到GL2上的所有非分裂环面上的零,则它是环向的;如果Eisenstein级数的权是相应域的zeta函数的零点,则它是环向的。我们计算了一类为1的全局函数场的这种形式的空间,并给出了g的亏格为0或1的全局函数场的有理位置。该空间具有维数g,并被期望的爱森斯坦级数所跨越。我们对这些曲线的zeta函数的Riemann假设导出了一个“自同构”证明。
---
英文标题:
《Toroidal automorphic forms for some function fields》
---
作者:
Gunther Cornelissen and Oliver Lorscheid
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL_2 is toroidal if all its right translates integrate to zero over all nonsplit tori in GL_2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus g zero or one, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an "automorphic" proof for the Riemann hypothesis for the zeta function of those curves.
---
PDF链接:
https://arxiv.org/pdf/0710.2994