全部版块 我的主页
论坛 经济学人 二区 外文文献专区
258 0
2022-03-07
摘要翻译:
我们考虑了一维波动界面在有吸引壁存在时的抬升和剥离模型。该模型还可以描述在系统一端有源的无序非淬灭介质中的对湮没过程。对于定态,用蒙特卡罗模拟研究了几种密度分布。我们指出了在有墙和没有墙的情况下看到的一些侧面之间的深刻联系。我们的结果是在共形不变性($C=0$理论)的背景下讨论的。我们发现了一些用组合方法获得的临界指数的意外值。我们解决了已知的(帕斯卡六边形)和新的(分裂六边形)双线性递推关系。这些方程的解本身就很有趣,因为它们给出了某些交替符号矩阵类的信息。
---
英文标题:
《Density profiles in the raise and peel model with and without a wall.
  Physics and combinatorics》
---
作者:
Francisco C. Alcaraz, Pavel Pyatov and Vladimir Rittenberg
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--

---
英文摘要:
  We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in a disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ($c = 0$ theory). We discover some unexpected values for the critical exponents, which were obtained using combinatorial methods.   We have solved known (Pascal's hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting on their own since they give information on certain classes of alternating sign matrices.
---
PDF链接:
https://arxiv.org/pdf/709.4575
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群