摘要翻译:
研究了低轨道上任意大的小卫星星座的最优控制问题。模拟缺乏星上推进,我们限制我们的驱动使用差动阻力机动,以在平面内改变卫星轨道。我们提出了一种有效的方法,在尊重驱动约束和最大限度地延长星座的使用寿命的情况下,将一组卫星分成一个期望的星座形状。通过将该问题化为线性规划,利用收缩时域模型预测控制方法求解每颗卫星每天的最优阻力指令。然后,我们将此控制策略应用于一个简单的、变化的大气密度模型的非线性轨道动力学仿真。我们展示了控制100+颗卫星在圆形低地球轨道上以相同初始条件开始形成等间距星座的能力(相对角分离误差容限为十分之一度)。星座分离任务可以在71天内完成,这是一个与实践状态竞争的时间框架。这种方法允许我们用牺牲总体星座寿命来交换收敛到期望星座所需的时间,总体星座寿命是以分离机动后组中的一颗卫星所经历的最大高度损失来衡量的。
---
英文标题:
《Small Satellite Constellation Separation using Linear Programming based
  Differential Drag Commands》
---
作者:
Emmanuel Sin, Murat Arcak, Andrew Packard
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
---
英文摘要:
  We study the optimal control of an arbitrarily large constellation of small satellites operating in low Earth orbit. Simulating the lack of on-board propulsion, we limit our actuation to the use of differential drag maneuvers to make in-plane changes to the satellite orbits. We propose an efficient method to separate a cluster of satellites into a desired constellation shape while respecting actuation constraints and maximizing the operational lifetime of the constellation. By posing the problem as a linear program, we solve for the optimal drag commands for each of the satellites on a daily basis with a shrinking-horizon model predictive control approach. We then apply this control strategy in a nonlinear orbital dynamics simulation with a simple, varying atmospheric density model. We demonstrate the ability to control a cluster of 100+ satellites starting at the same initial conditions in a circular low Earth orbit to form an equally spaced constellation (with a relative angular separation error tolerance of one-tenth a degree). The constellation separation task can be executed in 71 days, a time frame that is competitive for the state-of-the-practice. This method allows us to trade the time required to converge to the desired constellation with a sacrifice in the overall constellation lifetime, measured as the maximum altitude loss experienced by one of the satellites in the group after the separation maneuvers. 
---
PDF链接:
https://arxiv.org/pdf/1710.00104