全部版块 我的主页
论坛 经济学人 二区 外文文献专区
230 0
2022-03-07
摘要翻译:
本文研究了平面约束外三维聚合物的迁移。三种膜分别位于$Z=-H$,$Z=0$,$Z=H_1$。这些膜是密不透风的,除了中间的$z=0$有一个狭窄的孔。一种长度为$N$的聚合物最初夹在放置在$Z=-H$和$Z=0$的膜之间,并通过该孔转移。我们考虑强约束(小$H$),其中聚合物本质上被简化为二维聚合物,回转半径标度为$r^{\tinytext{(2d)}}_g\sim n^{\nu_{\tinytext{2d}}}$;这里,$\nu_{\tinytext{2d}}=0.75$是二维的Flory指数。聚合物表现出激发的动力学。基于理论分析和高精度的模拟数据,我们发现在无偏情况下$h=h1$,驻留时间$\tau_d$刻度为$n^{2+\nu_{tinytext{2d}}$,与我们先前发表的理论框架完全一致。对于$H_1=\infty$,该情况相当于二维场驱动易位。我们证明了在这种情况下$\tau_d$缩放为$n^{2\nu_{\tinytext{2d}}$,这与文献中已有的几个数值结果是一致的。此结果违反了先前报告的用于场驱动易位的$\tau_d$的下限$n^{1+\nu}$。根据能量守恒,我们认为$\tau_d$的实际下限是$n^{2\nu}$而不是$n^{1+\nu}$。因此,在这种理论上有动机的几何构型中,聚合物易位解决了一些最基本的问题,这些问题是最近激烈辩论的主题。
---
英文标题:
《Polymer Translocation out of Planar Confinements》
---
作者:
Debabrata Panja, Gerard T. Barkema and Robin C. Ball
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Soft Condensed Matter        软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  Polymer translocation in three dimensions out of planar confinements is studied in this paper. Three membranes are located at $z=-h$, $z=0$ and $z=h_1$. These membranes are impenetrable, except for the middle one at $z=0$, which has a narrow pore. A polymer with length $N$ is initially sandwiched between the membranes placed at $z=-h$ and $z=0$ and translocates through this pore. We consider strong confinement (small $h$), where the polymer is essentially reduced to a two-dimensional polymer, with a radius of gyration scaling as $R^{\tinytext{(2D)}}_g \sim N^{\nu_{\tinytext{2D}}}$; here, $\nu_{\tinytext{2D}}=0.75$ is the Flory exponent in two dimensions. The polymer performs Rouse dynamics. Based on theoretical analysis and high-precision simulation data, we show that in the unbiased case $h=h_1$, the dwell-time $\tau_d$ scales as $N^{2+\nu_{\tinytext{2D}}}$, in perfect agreement with our previously published theoretical framework. For $h_1=\infty$, the situation is equivalent to field-driven translocation in two dimensions. We show that in this case $\tau_d$ scales as $N^{2\nu_{\tinytext{2D}}}$, in agreement with several existing numerical results in the literature. This result violates the earlier reported lower bound $N^{1+\nu}$ for $\tau_d$ for field-driven translocation. We argue, based on energy conservation, that the actual lower bound for $\tau_d$ is $N^{2\nu}$ and not $N^{1+\nu}$. Polymer translocation in such theoretically motivated geometries thus resolves some of the most fundamental issues that are the subjects of much heated debate in recent times.
---
PDF链接:
https://arxiv.org/pdf/710.0147
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群