摘要翻译:
传感器选择是大规模传感器网络中的一个重要设计问题。传感器选择问题可以解释为选择保证一定估计性能的最佳传感器子集的问题。我们关注的是与一般非线性模型相关的观测。只要观测独立,且似然性满足正则性条件,所提出的框架是有效的。我们使用Cram\'er-Rao界(CRB)的几个函数作为性能度量。我们将传感器选择问题表述为选择向量的设计,选择向量的原始形式是一个非凸l0-(拟)范数优化问题。我们提出了松弛的传感器选择求解器,可以在多项式时间内有效地求解。我们还提出了一个投影次梯度算法,该算法对大规模问题具有吸引力,并展示了该算法如何易于分布。文中给出了一个与传感器定位设计有关的实例,说明了所提出的框架。
---
英文标题:
《Sparsity-Promoting Sensor Selection for Non-linear Measurement Models》
---
作者:
Sundeep Prabhakar Chepuri and Geert Leus
---
最新提交年份:
2014
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
Sensor selection is an important design problem in large-scale sensor networks. Sensor selection can be interpreted as the problem of selecting the best subset of sensors that guarantees a certain estimation performance. We focus on observations that are related to a general non-linear model. The proposed framework is valid as long as the observations are independent, and its likelihood satisfies the regularity conditions. We use several functions of the Cram\'er-Rao bound (CRB) as a performance measure. We formulate the sensor selection problem as the design of a selection vector, which in its original form is a nonconvex l0-(quasi) norm optimization problem. We present relaxed sensor selection solvers that can be efficiently solved in polynomial time. We also propose a projected subgradient algorithm that is attractive for large-scale problems and also show how the algorithm can be easily distributed. The proposed framework is illustrated with a number of examples related to sensor placement design for localization.
---
PDF链接:
https://arxiv.org/pdf/1310.5251