全部版块 我的主页
论坛 经济学人 二区 外文文献专区
519 0
2022-03-08
摘要翻译:
投票是一种简单的机制,将多个智能体的偏好组合在一起。代理人可能会试图通过错误地报告他们的偏好来操纵投票结果。这种操作可能存在的一个障碍是计算复杂性。特别是,计算如何操纵许多不同的投票规则是NP困难的。然而,NP硬度只限制了最坏情况下的复杂度。最近的理论结果表明,在实践中,操作往往很容易。本文通过实证研究单一可转移投票(STV)的可操作性,以确定计算复杂性是否真的是操纵的障碍。STV是第一个被证明是NP难的投票规则之一。这似乎也是更难操纵的投票规则之一。我们对包括统一选举和真实选举在内的一些选票分布进行了抽样。在我们的实验中,几乎在每一次选举中,很容易计算单个agent如何操纵选举,或者证明单个agent的操纵是不可能的。
---
英文标题:
《An Empirical Study of the Manipulability of Single Transferable Voting》
---
作者:
Toby Walsh
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--

---
英文摘要:
  Voting is a simple mechanism to combine together the preferences of multiple agents. Agents may try to manipulate the result of voting by mis-reporting their preferences. One barrier that might exist to such manipulation is computational complexity. In particular, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. In this paper, we study empirically the manipulability of single transferable voting (STV) to determine if computational complexity is really a barrier to manipulation. STV was one of the first voting rules shown to be NP-hard. It also appears one of the harder voting rules to manipulate. We sample a number of distributions of votes including uniform and real world elections. In almost every election in our experiments, it was easy to compute how a single agent could manipulate the election or to prove that manipulation by a single agent was impossible.
---
PDF链接:
https://arxiv.org/pdf/1005.5268
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群