全部版块 我的主页
论坛 经济学人 二区 外文文献专区
527 0
2022-03-08
摘要翻译:
在适当的条件下,基于一次差分(FD)变换的一步广义矩量法(GMM)在数值上等同于基于正交偏差(FOD)变换的一步GMM。然而,当时间周期数($t$)不小时,FOD变换所需的计算工作量较小。本文表明,FD和FOD变换的计算复杂度随个体数($N$)线性增加,但FOD变换的计算复杂度随$T$以$T^{4}$增加而增加,而FD变换的计算复杂度则以$T^{6}$增加。仿真结果表明,使用FOD变换的计算比使用FD变换的计算快几个数量级。结果表明,当基于FD变换和FOD变换的一步GMM相同时,如果使用FOD变换的估计器,则蒙特卡罗实验可以更快地进行。
---
英文标题:
《Quantifying the Computational Advantage of Forward Orthogonal Deviations》
---
作者:
Robert F. Phillips
---
最新提交年份:
2018
---
分类信息:

一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--

---
英文摘要:
  Under suitable conditions, one-step generalized method of moments (GMM) based on the first-difference (FD) transformation is numerically equal to one-step GMM based on the forward orthogonal deviations (FOD) transformation. However, when the number of time periods ($T$) is not small, the FOD transformation requires less computational work. This paper shows that the computational complexity of the FD and FOD transformations increases with the number of individuals ($N$) linearly, but the computational complexity of the FOD transformation increases with $T$ at the rate $T^{4}$ increases, while the computational complexity of the FD transformation increases at the rate $T^{6}$ increases. Simulations illustrate that calculations exploiting the FOD transformation are performed orders of magnitude faster than those using the FD transformation. The results in the paper indicate that, when one-step GMM based on the FD and FOD transformations are the same, Monte Carlo experiments can be conducted much faster if the FOD version of the estimator is used.
---
PDF链接:
https://arxiv.org/pdf/1808.05995
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群