摘要翻译:
模糊描述逻辑(DLs)是一个逻辑族,它允许对受模糊性影响的结构化知识进行表示和推理。尽管大多数表达能力不强的清晰DL,如ALC,都具有有限模型特性(FMP),但一旦我们进入模糊情况,情况就不是这样了。本文证明了如果我们允许任意知识库,那么Lukasiewicz和乘积模糊逻辑下的模糊DLs ALC不能验证FMP,即使我们限制在见证模型;换言之,对于任意知识库,有限可满足性和见证可满足性是不同的。本文的目的是指出FMP的失败,因为它影响了文献中发表的几种模糊ALC推理算法。
---
英文标题:
《On the Failure of the Finite Model Property in some Fuzzy Description
Logics》
---
作者:
Fernando Bobillo and Felix Bou and Umberto Straccia
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Fuzzy Description Logics (DLs) are a family of logics which allow the representation of (and the reasoning with) structured knowledge affected by vagueness. Although most of the not very expressive crisp DLs, such as ALC, enjoy the Finite Model Property (FMP), this is not the case once we move into the fuzzy case. In this paper we show that if we allow arbitrary knowledge bases, then the fuzzy DLs ALC under Lukasiewicz and Product fuzzy logics do not verify the FMP even if we restrict to witnessed models; in other words, finite satisfiability and witnessed satisfiability are different for arbitrary knowledge bases. The aim of this paper is to point out the failure of FMP because it affects several algorithms published in the literature for reasoning under fuzzy ALC.
---
PDF链接:
https://arxiv.org/pdf/1003.1588